aqua-kop.ru

Электролиты которые при диссоциации. Теория электролитической диссоциации — одна из основных в химии

Электролитическая диссоциация кислот

При растворении в воде кислоты, соли и основания диссоциируют на положительно и отрицательно заряженные ионы (катионы и анионы). Определим характерные общие признаки диссоциации электролитов каждого класса соединений.

Кислоты, как вы помните, состоят из Гидрогена и кислотного остатка, соединенных ковалентной полярной связью. В предыдущем параграфе на примере растворения гидроген хлорида мы рассмотрели, как под действием молекул воды полярная связь превращается в ионную, и кислота распадается на катионы Гидрогена и хлорид-ионы.

Таким образом, с точки зрения теории электролитической диссоциации Аррениуса,

Кислоты — это электролиты, при диссоциации которых образуются катионы Гидрогена и анионы кислотного остатка.

Подобно хлоридной кислоте протекает диссоциация и других кислот, например нитратной:

При диссоциации молекулы сульфатной кислоты число катионов Гидрогена вдвое превышает число анионов кислотного остатка — сульфат-ионов. Заряд аниона равен -2 (в формулах ионов записывают «2-»):

Названия анионов, образующихся при диссоциации кислот, совпадают с названиями кислотных остатков. Они приведены в таблице растворимости на форзаце.

Легко заметить, что при диссоциации различных кислот образуются различные анионы, но катионы только одного типа — катионы Гидрогена H+. Значит, именно катионы Гидрогена определяют характерные свойства кислот — кислый вкус, изменение окраски индикаторов, реакции с активными металлами, основными оксидами, основаниями и солями.

Многоосновные кислоты диссоциируют ступенчато, отщепляя ионы Гидрогена последовательно, друг за другом. Например, в растворе сульфатной кислоты протекают следующие процессы:

Как видно из приведенных уравнений диссоциации многоосновной кислоты, анионы, образующиеся при ступенчатой диссоциации на первой стадии, содержат ионы Гидрогена. Это отражено в названии анионов: HSO - — гидрогенсульфат-ион.

Электролитическая диссоциация ортофосфатной кислоты проходит в три стадии:

Суммарное уравнение диссоциации ортофосфатной кислоты имеет вид:

Таким образом, каждой многоосновной кислоте соответствует несколько анионов, и все они одновременно присутствуют в растворе.

Обратите внимание, что в некоторых уравнениях диссоциации стоят двунаправленные стрелки. Что они означают, вы узнаете в следующем параграфе.


Электролитическая диссоциация оснований

Основания состоят из катионов металлического элемента и гидроксид-анионов. При диссоциации оснований эти ионы переходят в раствор. Число гидроксид-ионов, образующихся при диссоциации, равно заряду иона металлического элемента. Таким образом, с точки зрения теории электролитической диссоциации

Основания — это электролиты, которые диссоциируют на катионы металлического элемента и гидроксид-анионы.

Рассмотрим уравнения диссоциации оснований на примере диссоциации натрий и барий гидроксидов:

При диссоциации оснований образуются анионы одного типа — гидроксид-ионы, определяющие все характерные свойства растворов щелочей: способность менять окраску индикаторов, реагировать с кислотами, кислотными оксидами и солями.

Электролитическая диссоциация солей

Соли образованы катионами металлического элемента и анионами кислотного остатка. При растворении солей в воде эти ионы переходят в раствор.

Соли — это электролиты, которые диссоциируют на катионы металлического элемента и анионы кислотного остатка.

Рассмотрим диссоциацию солей на примере диссоциации калий нитрата:

Аналогично диссоциируют и другие соли, например нитрат кальция и калий ортофосфат:

В уравнениях диссоциации солей заряд катиона по абсолютной величине равен степени окисления металлического элемента, а заряд аниона — сумме степеней окисления элементов в кислотном остатке. Например, купрум(П) сульфат распадается на ионы

а феррум(Ш) нитрат — на ионы

Заряд катионов металлических элементов в большинстве случаев можно определить по Периодической системе. Заряды катионов металлических элементов главных подгрупп обычно равны номеру группы, в которой расположен элемент:

Металлические элементы побочных подгрупп обычно образуют несколько ионов, например Fe 2 +, Fe 3 +.

Заряды кислотных остатков проще определять по числу ионов Гидрогена в составе молекулы кислоты, как вы это делали в 8 классе. Заряды некоторых кислотных остатков приведены в таблице растворимости на форзаце.

Обратите внимание, что в уравнениях диссоциации кислот, оснований и солей суммарный заряд катионов и анионов должен быть равен нулю, поскольку любое вещество является электронейтральным.

Ступенчатая диссоциация обусловливает возможность существования кислых и основных солей. Кислые соли содержат ионы Гидрогена, как кислоты. Именно поэтому такие соли называют кислыми. А в основных солях содержатся гидроксид-ионы, как в основаниях.

На первой стадии диссоциации сульфатной кислоты образуется гидрогенсульфат-ион HSO-, благодаря чему существуют кислые соли: NaHSO 4 (натрий гидрогенсульфат), Al(HSO 4) 3 (алюминий гидрогенсульфат) и др. Для ортофосфатной кислоты также характерны кислые соли K 2 HPO 4 (калий гидрогенортофосфат) или KH 2 PO 4 (калий дигидрогенортофосфат).

В растворах кислые соли диссоциируют в две стадии:

Кислые соли характерны только для многоосновных кислот, поскольку они диссоциируют ступенчато. Единственным исключением является одноосновная кислота — флуоридная. Благодаря водородным связям в растворе этой кислоты присутствуют частицы H 2 F 2 , и флуоридная кислота может образовывать кислую соль состава KHF 2 .

Некоторые нерастворимые гидроксиды образуют катионы, в которых имеется гидроксид-ион. Например, алюминий содержится в составе катиона AlOH 2+ , благодаря чему существует соль состава AlOHCl 2 (алюминий гидроксохлорид). Такую соль называют основной.


Ключевая идея

Контрольные вопросы

100. Дайте определение кислотам, основаниям и солям с точки зрения теории электролитической диссоциации.

101. В чем особенность диссоциации многоосновных кислот по сравнению с одноосновными? Объясните на примере сульфатной кислоты.

Задания для усвоения материала

102. В результате диссоциации молекулы кислоты образовался ион с зарядом 3—. Сколько ионов Гидрогена при этом образовалось?

103. Составьте уравнения электролитической диссоциации кислот: карбонатной, бромидной, нитритной. Назовите образующиеся анионы.

104. Какие из приведенных кислот будут диссоциировать ступенчато: HCl, H 2 CO 3 , HNO 3 , H 2 S, H 2 SO 3 ? Ответ подтвердите уравнениями реакций.

105. Составьте уравнения диссоциации солей: магний нитрата, алюминий хлорида, барий бромида, натрий карбоната, натрий ортофосфата.

106. Приведите по одному примеру солей, при диссоциации которых количеством вещества 1 моль образуется: а) 2 моль ионов; б) 3 моль ионов; в) 4 моль ионов; г) 5 моль ионов. Запишите уравнения диссоциации.

107. Запишите заряды ионов в веществах: a) Na 2 S, Na 2 SO 4 , Na 3 PO 4 , AlPO 4 ;

б) NaHSO 4 , Mg(HSO 4) 2 , CaHPO 4 , Ba(OH) 2 . Назовите эти вещества.

108. Составьте уравнения электролитической диссоциации веществ: калий гидроксида, барий сульфида, феррум(Ш) нитрата, магний хлорида, алюминий сульфата.

109. Составьте формулу вещества, при диссоциации которого образуются ионы Кальция и гидроксид-ионы.

110. Из перечня веществ выпишите отдельно электролиты и неэлектролиты: HCl, Ca, Cr 2 (SO 4) 3 , Fe 2 O 3 , Mg(OH) 2 , CO 2 , Sr(OH) 2 , Sr(NO 3) 2 , P 2 O 5 , H 2 O. Составьте уравнения диссоциации электролитов.

111. При диссоциации некоего нитрата образовался 1 моль катионов с зарядом 2+. Какое количество вещества нитрат-ионов при этом образовалось?

112. Составьте формулы и запишите уравнения диссоциации феррум(П) сульфата и феррум(Ш) сульфата. Чем отличаются эти соли?

113. Приведите по одному примеру уравнений диссоциации солей в соответствии со схемами (буквой М обозначен металлический элемент, а Х — кислотный остаток): а) МХ ^ М 2+ + Х 2- ; б) МХ 3 ^ М 3+ + 3Х - ;

в) М 3 Х ^ 3М+ + Х 3- ; г) М 2 Х 3 ^ 2М 3 + + 3Х 2- .

114. В растворе присутствуют ионы K+, Mg 2 +, NO-, SO4 - . Какие вещества растворили? Приведите два варианта ответа.

115*. Составьте уравнения диссоциации тех электролитов, которые образуют хлорид-ионы: CrCl 3 , KClO 3 , BaCl 2 , Ca(ClO) 2 , HClO 4 , MgOHCl.

Это материал учебника

Способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя - его диэлектрическая проницаемость (Схема электролитической диссоциации).

Диссоциация при плавлении

Под действием высоких температур ионы кристаллической решётки начинают совершать колебания, кинетическая энергия повышается, и наступит такой момент (при температуре плавления вещества), когда она превысит энергию взаимодействия ионов. Результатом этого является распад вещества на ионы.

Классическая теория электролитической диссоциации

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году . Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита . Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс . Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа:

Константа диссоциации определяется активностями катионов , анионов и недиссоциированных молекул следующим образом:

Значение зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α ) может быть рассчитана при любой концентрации электролита с помощью соотношения:

,

где - средний коэффициент активности электролита.

Слабые электролиты

Слабые электролиты - химические соединения, молекулы которых даже в сильно разбавленных растворах незначительно диссоциированны на ионы , которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым электролитам относится большинство органических кислот и многие органические основания в водных и неводных растворах.

Слабыми электролитами являются:

  • почти все органические кислоты и вода;
  • некоторые неорганические кислоты: HF, HClO, HClO 2 , HNO 2 , HCN, H 2 S, HBrO, H 3 PO 4 ,H 2 CO 3 , H 2 SiO 3 , H 2 SO 3 и др.;
  • некоторые малорастворимые гидроксиды металлов: Fe(OH) 3 , Zn(OH) 2 и др.

Сильные электролиты

Сильные электролиты - химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы . Степень диссоциации таких электролитов близка к 1. К сильным электролитам относятся многие неорганические соли , некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты , амиды и др.).

Классическая теория электролитической диссоциации применима лишь к разбавленным растворам слабых электролитов . Сильные электролиты в разбавленных растворах диссоциированы практически полностью, поэтому представления о равновесии между ионами и недиссоциированными молекулами лишено смысла. Согласно представлениям, выдвинутым в 20-30-х гг. 20 в. В. К. Семенченко (СССР), Н. Бьеррумом (Дания), Р. М. Фуоссом (США) и др., в растворах сильных электролитов при средних и высоких концентрациях образуются ионные пары и более сложные агрегаты. Современные спектроскопические данные показывают, что ионная пара состоит из двух ионов противоположного знака, находящихся в контакте («контактная ионная пара») или разделённых одной или несколькими молекулами растворителя («разделённая ионная пара»). Ионные пары электрически нейтральны и не принимают участия в переносе электричества. В сравнительно разбавленных растворах сильных электролитов равновесие между отдельными сольватированными ионами и ионными парами может быть приближённо охарактеризовано, аналогично классической теории электролитической диссоциации, константой диссоциации (или обратной величиной - константой ассоциации). Это позволяет использовать вышеприведённое уравнение для расчёта соответствующей степени диссоциации, исходя из экспериментальных данных.

В простейших случаях (большие одноатомные однозарядные ионы) приближённые значения константы диссоциации в разбавленных растворах сильных электролитов можно вычислить теоретически, исходя из представлений о чисто электростатическом взаимодействии между ионами в непрерывной среде - растворителе.

Примеры сильных электролитов: некоторые кислоты (HClO 4 , HMnO 4 , H 2 SO 4 , HCl, HBr; HI), гидроксиды щелочных и щёлочноземельных металлов (NaOH, KOH, Ba(OH) 2); большинство солей .

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Электролитическая диссоциация" в других словарях:

    электролитическая диссоциация - Диссоциация р р. веществ в растворе или расплаве электролитов. Тематики металлургия в целом EN electrolytic dissociation … Справочник технического переводчика

    ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ - см … Большая политехническая энциклопедия

    Полный или частичный распад молекул растворенного вещества на ионы в результате взаимодействия с растворителем. Обусловливает ионную проводимость растворов электролитов … Большой Энциклопедический словарь

    электролитическая диссоциация - – полный или частичный распад растворенного вещества на ионы. Общая химия: учебник / А. В. Жолнин … Химические термины

    Электролитическая диссоциация - – полный или частичный распад молекул растворенного вещества в результате взаимодействия с растворителем; обусловливает ионную проводимость растворов электролитов. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ… … Энциклопедия терминов, определений и пояснений строительных материалов

    Электролитическая диссоциация - ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ, полный или частичный распад растворенного вещества на ионы в результате взаимодействия с растворителем. Обусловливает электропроводность электролитов. … Иллюстрированный энциклопедический словарь

    Или ионизация (литер. Svante Arrhenius, Ueber die Dissociation der in Wasser gelösten Stoffe , Zeitschr. für physikalische Chemie , 1887; Sv. Arrhenius, La dissociation électrolytique des solutions. Rapport au Congrès internat. à Paris 1900 ; Max … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Полный или частичный распад молекул растворённого вещества на ионы в результате взаимодействия с растворителем. Обусловливает ионную проводимость растворов электролитов. * * * ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ, полный… … Энциклопедический словарь

    электролитическая диссоциация - elektrolitinė disociacija statusas T sritis chemija apibrėžtis Ištirpintos medžiagos virtimas jonais jai sąveikaujant su tirpiklio molekulėmis. atitikmenys: angl. electrolytic dissociation rus. электролитическая диссоциация … Chemijos terminų aiškinamasis žodynas

    электролитическая диссоциация - elektrolitinė disociacija statusas T sritis fizika atitikmenys: angl. electrolytic dissociation vok. elektrolytische Dissoziation, f rus. электролитическая диссоциация, f pranc. dissociation électrolytique, f … Fizikos terminų žodynas

Книги

  • Комплект таблиц. Химия. 8-9 класс (20 таблиц) , . Учебный альбом из 20 листов. Валентность. Строение атома, Изотопы. Электронные конфигурации атомов. Образование ковалентной и ионной химических связей. Типы кристаллических решеток.…

Лекция: Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты

Электролитическая диссоциация

Вам уже известно, что химические связи между атомами могут быть ионными, ковалентными, металлическими и водородными. Большинство химических реакций протекает в растворах. И как поведет себя вещество в этих растворах зависит от характера названных связей.

На уроках физики вы узнали, что некоторые вещества способны проводить электрический ток. Эта способность определяется наличием в их молекулах заряженных ионов. К таким веществам относятся растворы кислот, солей, оснований и называются они электролитами. Эти вещества образуют ионную и сильно полярную ковалентную связи. Вещества, не относящиеся ни к одной из перечисленных групп, являются неэлетролитами. К ним можно отнести: простые вещества, оксиды, органические вещества (к примеру, спирты, углеводороды, углеводы, хлорпроизводные углеводородов). Эти вещества образуют неполярные или малополярные ковалентные связи.

Под электролитической диссоциацией следует понимать распад вещества на свободные ионы при его растворении в воде.

Автором теории электролитической диссоциации является шведский физик и химик Сванте Аррениус. Его основная идея заключается в том, что под действием воды как растворителя электролиты распадаются на свободные ионы, переносящие электрический заряд:

  • «+ » - катион ;
  • «- » - анион .

Под действием электрического тока катионы движутся к катоду со знаком «-», а анионы к аноду со знаком «+».

Помните, реакция электролитической диссоциации относится к обратимым. Прямая реакция называется электролитической диссоциацией, а обратная – моляризацией.

Число молекул, распавшихся на ионы показывает степень диссоциации, которая обозначается буквой альфа – α. Зависит она от природы реагентов, их концентрации и t.

Степень диссоциации вычисляется по формуле a = n / N , где n – это число распавшихся ионов, N – число молекул.


Сильные и слабые электролиты

Если перед нами вещества, чьи молекулы отлично распадаются на ионы, то мы имеем дело с сильными электролитами . А те, чьи молекулы мало распадаются на ионы являются слабыми .


К сильным относятся :
  • HCl, HBr, HClO 4 , H 2 SO 4 и другие сильные кислоты;
  • LiOH, NaOH, RbOH и другие щелочи;
  • Ba(OH) 2 ,Ca(OH) 2 и другие гидроксиды щелочноземельных металлов;
  • Все соли, растворимые в воде
К слабым электролитам относятся :
  • Вода;
  • Почти все органические кислоты (CH 3 COOH, C 2 H 5 COOH), некоторые неорганические кислоты (H 2 CO 3 , H 2 S)
  • Малорастворимые в воде соли (Ca 3 (PO 4) 2)
  • Малорастворимые основания и гидроксид аммония; Cu(OH) 2 ; Al(OH) 3 ; NH 4 OH).
Условная степень диссоциации сильных электролитов: α>30%; а слабых: α<1%.

Рассмотрим особенности протекания электролитической диссоциации солей, основания, кислот:

Электролитическая диссоциация оснований

Диссоциация щелочей дает катионы металла и всегда анионы гидроксогруппы OH.

К примеру: Ca(OH) 2 ↔ Ca 2 + 2OH -

Слабые многокислотные основания диссоциируют по ступеням. Возьмем в пример оксид железа:

  1. Fe(OH) 2 ↔ (FeOH) + +ОH -
  2. (FeOH) + ↔ Fe 2 + ОH -

Диссоциация амфотерных оснований, проявляющих себя в реакциях то, как кислоты, то как основания, может протекать двумя способами. По типу диссоциации оснований, либо по типу диссоциации кислот.

Электролитическая диссоциация кислот

При диссоциации кислот образуются анионы кислотного остатка и всегда катионы водорода (H +).

К примеру: HCl ↔ H + + Cl -

Слабые многоосновные кислоты диссоциируют по ступеням. Рассмотрим на примере фосфорной кислоты:

  1. Н 3 РО 4 ↔ Н + + Н 2 РО 4 -1
  2. Н 2 РО 4 -1 ↔ Н + + НРO 4 -2
  3. НРО 4 -2 ↔ Н + + PО 4 -3

Электролитическая диссоциация солей

Соли диссоциируют на катион металла и анион кислотного остатка.

  • Сульфат алюминия: Al 2 (SO 4) 3 ↔ 2Al 3+ + 3(SO 4) 2-

В данной реакции образовалось 2 моли ионов Al 3+ и 3 моли SO 4 2- , следовательно, катионов меньше, чем анионов в полтора раза.

  • Фосфат натрия: Na 3 PO 4 ↔ 3Na + + PO 4 3 -

В данной реакции катионов образовалось в три раза больше, чем анионов. Как видно из уравнений, соли распались на катионы металла и анионы кислотного остатка. В этих реакциях вы не видите основного участника любой реакции электролитической диссоциации: H 2 O. Принято не записывать данное вещество в схеме, но иметь ввиду, что вода есть.

Вещества-электролиты при растворении в воде распадаются на заряженные частицы — ионы. Обратное явление — моляризация, или ассоциация. Образование ионов объясняет теория электролитической диссоциации (Аррениус, 1887). На механизм распада химических соединений при расплавлении и растворении влияют особенности типов химических связей, строение и характер растворителя.

Электролиты и непроводники

В растворах и расплавах происходит разрушение кристаллических решеток и молекул — электролитическая диссоциация (ЭД). Распад веществ сопровождается образованием ионов, появлением такого свойства, как электропроводность. Не каждое соединение способно диссоциировать, а только вещества, которые изначально состоят из ионов либо сильно полярных частиц. Присутствием свободных ионов объясняется свойство электролитов проводить ток. Обладают такой способностью основания, соли, многие неорганические и некоторые органические кислоты. Непроводники состоят из малополярных или неполяризованных молекул. Они не распадаются на ионы, являясь неэлектролитами (многие органические соединения). Переносчики зарядов — положительные и отрицательные ионы (катионы и анионы).

Роль С. Аррениуса и других химиков в изучении диссоциации

Теория электролитической диссоциации обоснована в 1887 году ученым из Швеции С. Аррениусом. Но первые обширные исследования свойств растворов были проведены еще русским ученым М. Ломоносовым. Внесли вклад в изучение заряженных частиц, возникающих при растворении веществ, Т. Гротгус и М. Фарадей, Р. Ленц. Аррениус доказал, что электролитами являются многие неорганические и некоторые органические соединения. Шведский ученый объяснил электропроводность растворов распадом вещества на ионы. Теория электролитической диссоциации Аррениуса не придавала значения непосредственному участию молекул воды в этом процессе. Русские ученые Менделеев, Каблуков, Коновалов и другие считали, что происходит сольватация — взаимодействие растворителя и растворенного вещества. Когда идет речь о водных системах, то применяется название «гидратация». Это сложный физико-химический процесс, о чем свидетельствует образование гидратов, тепловые явления, изменение цвета вещества и появление осадка.

Основные положения теории электролитической диссоциации (ТЭД)

Многие ученые работали над уточнением теории С. Аррениуса. Потребовалось ее усовершенствование с учетом современных данных о строении атома, химической связи. Сформулированы основные положения ТЭД, отличающиеся от классических тезисов конца XIX века:

Происходящие явления необходимо учитывать при составлении уравнений: применить специальный знак обратимого процесса, подсчитать отрицательные и положительные заряды: они в сумме должны совпадать.

Механизм ЭД ионных веществ

Современная теория электролитической диссоциации учитывает строение веществ-электролитов и растворителей. При растворении связи между разноименно заряженными частицами в ионных кристаллах разрушаются под воздействием полярных молекул воды. Они буквально «вытягивают» ионы из общей массы в раствор. Распад сопровождается образованием вокруг ионов сольватной (в воде — гидратной) оболочки. Кроме воды, повышенной диэлектрической проницаемостью обладают кетоны, низшие спирты. При диссоциации хлорида натрия на ионы Na + и Cl - регистрируется начальная стадия, которая сопровождается ориентацией диполей воды относительно поверхностных ионов в кристалле. На заключительном этапе гидратированные ионы освобождаются и диффундируют в жидкость.

Механизм ЭД соединений с ковалентной сильнополярной связью

Молекулы растворителя влияют на элементы кристаллического строения неионных веществ. Например, воздействие диполей воды на хлороводородную кислоту приводит к изменению типа связи в молекуле с ковалентной полярной на ионную. Вещество диссоциирует, в раствор поступают гидратированные ионы водорода и хлора. Этот пример доказывает важность тех процессов, которые возникают между частицами растворителя и растворенного соединения. Именно это взаимодействие приводит к образованию ионов электролита.

Теория электролитической диссоциации и основные классы неорганических соединений

В свете основных положений ТЭД кислотой можно назвать электролит, при распаде которого из положительных ионов можно обнаружить только протон Н + . Диссоциация основания сопровождается образованием или освобождением из кристаллической решетки только аниона ОН - и катиона металла. Нормальная соль при растворении дает положительный ион металла и отрицательный — остатка кислоты. Основная соль отличается наличием двух видов анионов: ОН-группы и кислотного остатка. В кислой соли из катионов присутствуют только водород и металл.

Сила электролитов

Для характеристики состояния вещества в растворе используется физическая величина — степень диссоциации (α). Находят ее значение из отношения количества распавшихся молекул к общему их числу в растворе. Глубину диссоциации определяют разные условия. Важны диэлектрические показатели растворителя, структура растворенного соединения. Обычно степень диссоциации понижается с ростом концентрации и увеличивается при повышении температуры. Зачастую степень диссоциации конкретного вещества выражают в долях от единицы.

Классификация электролитов

Теория электролитической диссоциации в конце XIX века не содержала положения о взаимодействии ионов в растворе. Несущественным казалось Аррениусу влияние молекул воды на распределение катионов и анионов. Представления Аррениуса о сильных и слабых электролитах были формальными. Исходя из классических положений, можно получить значение α = 0,75-0,95 для сильных электролитов. В экспериментах доказана необратимость их диссоциации (α →1). Практически полностью распадаются на ионы растворимые соли, серная и соляная кислоты, щелочи. Частично диссоциируют сернистая, азотистая, плавиковая, ортофосфорная кислоты. Слабыми электролитами считаются кремниевая, уксусная, сероводородная и угольная кислоты, гидроксид аммония, нерастворимые основания. Воду также относят к слабым электролитам. Диссоциирует небольшая часть молекул Н 2 О, одновременно происходит моляризация ионов.

Электролитическая диссоциация - процесс распада электролита на ионы при его растворении или плавлении.

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблукови В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс.

Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Основные положения ТЭД (Теории электролитической диссоциации):

Молекулы распадаются на положительно и отрицательно заряженные ионы (простые и сложные).

Под действием электрического тока катионы (положительно заряженные ионы движутся к катоду(-), а анионы (отрицательно заряженные ионы) к аноду(+)

Степень диссоциации зависит от природы вещества и растворителя, концентрации, температуры.

Если степень диссоциации зависит от природы вещества, то можно судить, что существует разграничение между определёнными группами веществ.

Большая степень диссоциации присуща сильным электролитам (большинству оснований, солям, многим кислотам). Стоит учесть, что распад на ионы – обратимая реакция. Так же стоит сказать, что в данной теме не будут разобраны примеры диссоциации двойных и основных солей, их диссоциация описана в теме “соли”.
Примеры сильных электролитов:
NaOH, K 2 SO 4 , HClO 4
Уравнения диссоциации:
NaOH⇄Na + +OH -

K 2 SO 4 ⇄2K + +SO 4 2-

HClO 4 ⇄H + +ClO 4 -

Количественной характеристикой силы электролитов является степень диссоциации (α) – отношение молярной концентрации продиссоциировавшего электролита к его общей молярной концентрации в растворе.

Степень диссоциации выражается в долях единицы или в процентах. Интервал значений – от 0 до 100%.

α = 0% относится к неэлектролитам (диссоциация отсутствует)

0% <α < 100% относится к слабым электролитам (диссоциация неполная)
α = 100% относится к сильным электролитам (полная диссоциация)

Так же стоит помнить про количество ступеней диссоциации, например:
Диссоциация раствора H 2 SO 4

H 2 SO 4 ⇄H + +HSO 4 -

HSO 4 - ⇄H + +SO 4 2-

У каждой ступени диссоциации своя степень диссоциации.
Например, диссоциация солей CuCl 2 , HgCl 2:
CuCl 2 ⇄Cu 2+ +2Cl - диссоциация протекает полностью

А в случае с хлоридом ртути диссоциация идёт неполностью и то не до конца.

HgCl 2 ⇄HgCl + +Cl -

Возвращаясь же к раствору серной кислоты, стоит сказать, что степень диссоциации обеих ступеней разбавленной кислоты гораздо больше, чем у концентрированной. При диссоциации концентрированного раствора очень много молекул вещества и большая концентрация гидроанионов HSO 4 - .

У многоосновных кислот и многокислотных оснований диссоциация идёт в несколько ступеней (в зависимости от основности).

Перечислим сильные и слабые кислоты и приступим к уравнениям ионного обмена:
Сильные кислоты (HCl, HBr, HI, HClO 3 , HBrO 3 , HIO 3 , HClO 4 , H 2 SO 4 , H 2 SeO 4 ,HNO 3 , HMnO 4 , H 2 Cr 2 O 7)

Слабые кислоты (HF, H 2 S, H 2 Se, HClO, HBrO, H 2 SeO 3 , HNO 2 ,H 3 PO 4 , H 4 SiO 4 , HCN, H 2 CO 3 , CH 3 COOH)

Химические реакции в растворах и расплавах электролитов протекают с участием ионов. В таких реакциях степени окисления элементов не изменяются, и сами реакции называются реакциями ионного обмена .

Реакции ионного обмена будут протекать до конца (необратимо) , если образуются малорастворимые или практически нерастворимые вещества (они выпадают в осадок), летучие вещества (выделяются в виде газов) или слабые электролиты (например, вода).

Реакции ионного обмена принято писать в три стадии:
1. Молекулярное уравнение
2. Полное ионное уравнение
3. Сокращенное ионное уравнение
При написании обязательно указывать осадки и газы, а так же руководствоваться таблицей растворимости.

Реакции, где все реагенты и продукты получились растворимые в воде, не протекают.


Несколько примеров:
Na 2 CO 3 +H 2 SO 4 →Na 2 SO 4 +CO 2 +H 2 O

2Na + +CO 3 2- +2H + +SO 4 2- →2Na + +SO 4 2- +CO 2 +H 2 O

CO 3 2- +2H + →CO 2 +H 2 O

Сокращённое ионное уравнение получается с помощью вычёркивания одинаковых ионов из обеих частей полного ионного уравнения.

Если реакция ионного обмена идёт между двумя солями с образованием осадка, то следует брать два хорошо растворимых реагента. То есть, реакция ионного обмена пойдёт если растворимость реагентов будет выше, чем у одного из продуктов.

Ba(NO 3) 2 +Na 2 SO 4 →BaSO 4 ↓+2NaNO 3

Иногда при написании реакций ионного обмена пропускают полное ионное уравнение и сразу пишут сокращенное.

Ba 2+ +SO 4 2- →BaSO 4 ↓

Для получения осадка малорастворимого вещества всегда надо выбирать хорошо растворимые реагенты в их концентрированных растворах.
Например:
2KF+FeCl 2 →FeF 2 ↓+2KCl

Fe 2+ +2F - →FeF 2 ↓

Данные правила подбора реагентов для осаждения продуктов справедливы только для солей.

Примеры реакций с выпадением осадков:
1.Ba(OH) 2 +H 2 SO 4 →BaSO 4 ↓+2H 2 O

Ba 2+ +SO 4 2- →BaSO 4 ↓

2. AgNO 3 +KI→AgI↓+KNO 3

Ag + +I - →AgI↓

3.H 2 S+Pb(NO 3) 2 →PbS↓+2HNO 3

H 2 S+Pb 2+ →PbS↓+2H +

4. 2KOH+FeSO 4 →Fe(OH) 2 ↓+K 2 SO 4

Fe 2+ +2OH - →Fe(OH) 2 ↓

Примеры реакций с выделением газов:
1.CaCO 3 +2HNO 3 →Ca(NO 3) 2 +CO 2 +H 2 O

CaCO 3 +2H + →Ca 2+ +CO 2 +H 2 O

2. 2NH 4 Cl+Ca(OH) 2 →2NH 3 +CaCl 2 +2H 2 O

NH 4 + +OH - →NH 3 +H 2 O

3. ZnS+2HCl→H 2 S+ZnCl 2

ZnS+2H + →H 2 S+Zn 2+

Примеры реакций с образованием слабых электролитов:
1.Mg(CH 3 COO) 2 +H 2 SO 4 →MgSO 4 +2CH 3 COOH

CH 3 COO - +H + →CH 3 COOH

2. HI+NaOH→NaI+H 2 O

H + +OH - →H 2 O

Рассмотрим применение изученного материала на конкретных заданиях, встречающихся на экзаменах:
№1 .Среди веществ: NaCl, Na 2 S, Na 2 SO 4 – в реакцию с раствором Cu(NO3) 2 вступает(-ют)

1) толькоNa 2 S

2) NaCl и Na 2 S

3) Na 2 Sи Na 2 SO 4

4) NaCl и Na 2 SO 4

Под словом “вступают” подразумевается “протекает реакция”, а как было сказано выше, реакция протекает если образовалось нерастворимое или малорастворимое вещество, выделился газ или образовался слабый электролит (вода).

Разберём варианты по очереди.
1) Cu(NO 3) 2 +Na 2 S→CuS↓+2NaNO 3 образовался осадок.
2)NaCl+Cu(NO 3) 2 ↛CuCl 2 +2NaNO 3

Протекает только реакция с Na 2 S с образованием осадка

3)С Na 2 S так же будет образование осадка как и в первых двух примерах.
Na 2 SO 4 +Cu(NO 3) 2 ↛CuSO 4 +2NaNO 3

Все продукты являются хорошо растворимыми электролитами, это не газы, следовательно, реакция не протекает.

4) С Na 2 SO 4 реакция не протекает как в прошлом варианте ответа
NaCl+Cu(NO 3) 2 ↛CuCl 2 +2NaNO 3

Все продукты являются хорошо растворимыми электролитами, это не газы, следовательно, реакция не протекает.

Следовательно, подходит 1 вариант ответа.

№2 . Газ выделяется при взаимодействии

1) MgCl 2 и Ba(NO 3) 2

2) Na 2 CO 3 и CaCl 2

3) NH 4 ClиNaOH

4) CuSO 4 и KOH

Слово “газ” в таких заданиях обозначает именно газы и легколетучие соединения.

В заданиях в качестве таких соединений обычно встречаются NH 3 ·H 2 O, H 2 CO 3 (в нормальных условиях проведения реакции разлагается на CO 2 и H 2 O, принято не писать полную формулу угольной кислоты, а сразу расписывать на газ и воду), H 2 S.

Из представленных веществ выше мы не сможем получить H 2 S, потому что отсутствует сульфид-ион во всех веществах. Так же не сможем получить углекислый газ, ибо для его получения из соли нужно добавить кислоту, а в паре с карбонатом натрия находится другая соль.
Мы можем получить газ в 3 варианте ответа.
NH 4 Cl+NaOH→NH 3 +NaCl+H 2 O

Выделился газ с резким запахом.

Следовательно, подходит 3 вариант ответа.

№3 .В реакцию с соляной кислотой вступает

1) нитрат серебра

2) нитрат бария

3) серебро

4) оксид кремния

Среди реагентов есть два электролита, чтобы прошла реакция, нужно, чтоб выделился осадок.
С оксидом кремния соляная кислота не прореагирует, а серебро не вытеснит водород из соляной кислоты.
Ba(NO 3) 2 +2HCl→BaCl 2 +2HNO 3 реакция не будет протекать, так как все продукты – растворимые электролиты
AgNO 3 +HCl→AgCl↓+NaNO 3

Выпадет белый творожистый осадок нитрата серебра
Следовательно, подходит 1 вариант ответа.

Следующий пример задания, в отличие от первых трёх, взят из КИМа ЕГЭ 2017.
Первые три взяты из КИМа ОГЭ 2017

Установите соответствие между формулами веществ и реагентом, с помощью которого можно различить их водные растворы: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.
ФОРМУЛЫ ВЕЩЕСТВ РЕАГЕНТ
А) HNO 3 и H 2 O 1) CaCO 3
Б)KClи NaOH 2) KOH

В)NaClи BaCl 2 3) HCl

Г) AlCl 3 и MgCl 2 4) KNO 3

Чтобы выполнить это задание, следует сначала понять, что под каждой буквой указаны два вещества, которые находятся в одном растворе и нужно подобрать вещество так, чтоб хотя бы одно из них вступило в качественную реакцию с веществом-реагентом, который дан под цифрой.

К раствору азотной кислоты добавим карбонат кальция, углекислый газ станет признаком реакции:
2HNO 3 +CaCO 3 →Ca(NO 3) 2 +CO 2 +H 2 O
Ещё, по логике, карбонат кальция не растворяется в воде, значит, во всех остальных растворах тоже не растворится, следовательно, к признакам реакции можно добавить растворение карбоната кальция, помимо выделения газа.

Раствор под буквой Б можно было бы различить с помощью соляной кислоты под цифрой 3, но только в случае, если было бы разрешено воспользоваться индикатором (фенолфталеин), который бы обесцветился после реакции, ибо произойдёт нейтрализация щёлочи .

Поэтому, можем различитьв растворе OH - ион только при помощи 5 раствора (CuSO 4)
2NaOH+CuSO 4 →Cu(OH) 2 ↓+Na 2 SO 4

Образовались кристаллики голубого цвета на две раствора.

Раствор под буквой В можем различить так же с помощью реактива под номером 5, ибо сульфат-ионы, соединяясь с барием сразу выпадут в белый кристаллический осадок, который не растворим в избытке даже самых сильных кислот.
BaCl 2 +CuSO 4 →CuCl 2 +BaSO 4 ↓

Раствор под буквой Г нетрудно различить с помощью любой щелочи, т.к основания магния и алюминия при протекании реакции сразу выпадут в осадок. Щелочь представлена под цифрой 2

AlCl 3 +3KOH→Al(OH) 3 ↓+3KCl

MgCl 2 +2KOH→Mg(OH) 2 ↓+2KCl

Редактор: Харламова Галина Николаевна

Загрузка...