aqua-kop.ru

Метод валентных связей и его основные положения. Метод валентных связей (ВС) Характеристика ковалентной связи

Теория валентных связей (МВС) применительно к комплексным соединениям была разработана Л.Полингом в 1930г. В настоящее время ее используют сравнительно редко, но она прекрасно служила около четверти века химии координационных соединений для объяснения некоторых свойств комплексов (пространственное строение, магнитные свойства). Несмотря на громоздкость количественных расчетов, большие проблемы в интерпретации разнообразных искажений октаэдрических комплексов, отсутствие предсказательной способности даже в случаях высокосимметричного геометрического строения координационных сфер и другие недостатки, МВС остается удобным инструментом, позволяющим наглядно на качественном уровне объяснить факт образования комплексов, дающим возможности оценивать взаимные предпочтения к связыванию, предрасположенность комплексов к гидролизу, поликонденсации, предсказывать состав и некоторые свойства карбонилов и родственных соединений и, конечно, объяснять, а во многих случаях и предсказывать магнитные свойства комплексов .

Основные положения МВС, касающиеся структуры комплексов формулируются следующим образом:

1. Связь между комплексообразователем и лигандами устанавливается по донорно-акцепторному механизму, причем в σ –связи лиганд является донором электронной пары ("кислотой Льюиса"), центральный атом – акцептором ("основанием Льюиса").

2. Мерой прочности связи служит степень перекрывания орбиталей. Для объяснения факта образования прочных связей при вполне конкретном пространственном расположении лигандов вокруг центрального атома, зачастую не совпадающим с пространственным расположением его собственных вакантных АО вводится понятие о гибридизации комплексообразователя, участвующих в σ –связывании. Тип гибридизации определяется числом, природой центрального атома и лигандов. Характер гибридизации определяет геометрическую форму комплекса.

3. Дополнительное упрочение комплекса обусловлено возникновением дополнительного π –связывания. При этом зачастую в качестве донора выступает электроположительный атом комплексообразователя, а акцептором – более электроотрицательный атом, за счет которого координируется лиганд. Такое донорно-акцепторное взаимодействие получило название дативного .



4. Магнитные свойства, проявляемые комплексом, объясняются особенностями заселения электронами орбиталей комплексообразователя. При наличии неспаренных электронов комплекс парамагнитен . Полное отсутствие неспаренных электронов обуславливает диамагнетизм комплексного соединения . Приближенное значение магнитного момента μ (в магнетонах Бора, μ В) можно рассчитать по формуле

, (4.10 )

где n – число неспаренных электронов.

Прежде чем разобрать несколько примеров применения МВС для анализа строения и свойств ряда комплексов,


полезно вспомнить некоторые сведения об электронном строении, валентных возможностях потенциальных комплексообразователей и лигандов, а также прокомментировать отдельные положения теории Л.Полинга.

Атомы второго периода, выступая в качестве комплексообразователей (Ве, В), а стало быть, устанавливая в заметной степени ковалентные связи с лигандами, ограничены в предельно достижимых КЧ, т.к. на валентном энергетическом уровне имеют только четыре орбиталями (2s – и 2р –). Элементы III-го и больших периодов располагают вакантными nd –орбиталями и за счет них могут проявить повышенные акцепторные свойства (увеличить КЧ до 6 и более, установить дополнительные π –связи с лигандами σ – и π –донорами). Однако, как уже отмечалось ранее (гл. 1.5), энергия nd –орбиталей довольно велика. В то же время их энергетическая выгодность для электронов усиливается при связывании рассматриваемого атома с сильно электроотрицательными элементами (особенно со F – , и лигандами, координирующимися атомами кислорода: О 2– , ОН – , ОН 2 и т.п.). Впервые предположение о возможности использования в связях внешних d –орбиталей было высказано в 1937г. Хиггинсом, а позднее оно нашло расчетное подтверждение.



Атомы переходных элементов располагают, к тому же еще и (n-1)d –орбиталями, которые гораздо более валентны, чем nd –орбитали, особенно у первых элементов декад, особенно в невысоких положительных степенях окисления. По мере заполнения (n-1)d –орбиталей электронами их акцепторные возможности ослабевают (усиливается вероятность использования в этом качестве nd –орбиталей), зато растут донорные свойства и, соответственно, усиливаются предпочтения к связыванию с лигандами σ –донорами и π –акцепторами.

Чтобы различать два вида комплексов, были введены понятия: внешнеорбитальные и внутриорбитальные (Таубе), спин-свободные и спин-спаренные (Ньюхольм), высокоспиновые и низкоспиновые (Оргел).

Участвующие в ковалентном связывании атомные орбитали должны быть сопоставимы по энергии и соответствовать друг другу по симметрии: располагаться таким образом, чтобы обеспечить перекрывание участками, в которых знаки волновых функций совпадают. Поскольку s –орбиталь среди валентных обычно имеет самую низкую энергию, она практически всегда используется в связывании, но из-за сферической симметрии она не может участвовать в π –перекрывании, а σ –взаимодействие может поддерживать в любом направлении (в том числе, и будучи задействована в процессах гибридизации). Симметрия р –орбиталей позволяет им участвовать как в σ –, так и в π –перекрываниях. В составе центрального атома для поддержания его КЧ (больше единицы: 6, 4, реже другие) р –орбитали предварительно гибридизуются с s – и, при необходимости, с d –орбиталями. Кроме того, симметрия р π –связывании (обычно, в составе донорных атомов лигандов). При высоких КЧ (4 и выше) в σ –связывании могут вовлекаться и d –орбитали подходящей симметрии (в квадратах и октаэдрах – расположенные лепестками вдоль прямоугольных осей координат d x 2 - y 2 , d z 2 , а при тетраэдрическом окружении – расположенные по биссектрисам координатных углов d xy , d xz , d yz). По причинам, которые будут пояснены позже, первые две орбитали имеют групповое обозначение d γ (или е g), а три другие – d ε (или t 2 g). Симметрия d –орбиталей позволяет им участвовать и в π –взаимодействии, причем, из-за некоторой направленности в сторону потенциального партнера они могут обеспечить более сильное перекрывание электронных облаков, чем то, что достигается при использовании в π –связях р –орбиталей сопоставимой энергии (близких по размеру).

Таблица 4.11

Форма и относительная прочность гибридных связей (Е * )

Наиболее часто встречающиеся типы гибридизации, соответствующие им (полученные расчетным путем) геометрические формы комплексов, а также относительная прочность σ –связей, образуемых с помощью соответствующих гибридных орбиталей, приведены в таблице 4.11.

Что касается третьего пункта, то поводом для постулирования этого положения стали примеры прочного связывания некоторых 4d – и 5d –элементов с лигандами, донорные свойства которых выражены достаточно слабо. Например, Pt(II), Hg(II), Au(III) лучше связываются с крупными галогенид-ионами, чем с F – ; они же образуют достаточно прочные комплексы с:PF 3 и ∶P(C 6 H 5) 3 , но вовсе не связываются с ∶РН 3 (напомним, что молекула ∶РН 3 очень неохотно связывается с таким активным акцептором электронной пары, как Н +). Эти факты были объяснены Полингом несколькими причинами, одна из которых – растущая кратность связи за счет дополнительного дативного π –взаимодействия комплексообразователей с конфигурациями d 8 , d 10 с d –орбиталями атомов Cl, Br, J, P. В свою очередь d –орбитали фосфора активней вовлекаются в связывание в составе таких лигандов, где их энергия понижена под влиянием собственных внутрилигандных сильно электроотрицательных атомов (F) или группировок (С 6 Н 5).

Существование разнообразных форм дополнительного π –связывания M–L было в дальнейшем подкреплено множеством разнообразных примеров. Важнейшие типы π–взаимодействия в комплексах могут быть систематизированы следующим образом (рис.4.26):

а) π d (M) → p (L) : частичный переход электронов с d р –орбитали лиганда;

б) π d (M) → d (L) : частичный переход электронов с d –орбитали металла на вакантные d –орбитали лиганда;

в) π p (M) ← p (L) : частичный переход электронов с р р –орбитали металла;

г) π d (M) ← p (L) : частичный переход электронов с р –орбитали лиганда на вакантные d –орбитали металла.

Теперь можно закрепить применение разобранных положений теории Полинга на конкретных примерах, при их анализе рассмотрим и магнитные свойства комплексов. Вначале обсудим состав, структуру и некоторые свойства комплексных соединений d –металлов.

Для первых d –элементов характерны высшие положительные степени окисления. Это формально означает, что в качестве комплексообразователя выступает полностью ионизированный атом, имеющий много пустых орбиталей и, соответственно, он должен предпочтительно связываться с лигандами σ – и π –донорами. В частности, для самыми стабильными комплексами Ti 4+ являются фторидный (в меньшей степени – другие галогенидные) и кислородсодержащие. Если не принимать во внимание полимерные соединения, то это анионный комплекс 2– и катионный 2+ (аквокомплекс " 4+ " очень сильно гидролизуется под сильным поляризующим воздействием центрального атома; в степени окисления +III аквокомплекс гидролизуется в гораздо меньшей степени: 3+). Электронная конфигурация Ti 4+ : 3d 0 4s 0 4p 0 , в σ –связывании с лигандами участвуют d 2 3 -гибридные орбитали, пустые d ε могут быть задействованы в дополнительном многоцентровом π d (M) ← p (L) –связывании:

Катионные комплексы Ti 4+ и Ti 3+ также являются внутриорбитальными, имеют октаэдрическую симметрию, но в отличие от 3+ (и 2–) дигидроксо-диаквотитан (IV) имеет искаженную структуру: связи с гидродроксо-группами короче, чем с молекулами воды (КЧ = 2+4). Это можно объяснить неравноценным π –связыванием (более сильными π –донорными свойствами ионов ОН –). В то же время 3+ является парамагнитной частицей, тогда, как 2– и 3– , 2+ и + , однако данные частицы (особенно последние) легко вступают в реакции замещения на F – или (менее охотно) на кислородсодержащие лиганды:

3– , 3+ , 3–)

· все комплексы Cr 3+ должны быть парамагнитными, т.к. комплексообразователь располагает тремя электронами;

(магнитные моменты всех комплексов Cr 3+ соответствуют наличию

трех неспаренных электронов ).

Отметим, что из-за частичной заселенности d ε –орбиталей, Cr 3+ не может проявить ни π –акцепторных свойств (в составе 3+), ни π –донорных (в составе 3–). Любопытно, что цианидные комплексы (карбонилы и другие комплексы с лигандами активными π –акцепторами) нередко проявляют высокое сродство к электрону, что позволяет в составе таких соединений стабилизировать у d -элементов аномально низкие (порой даже отрицательные) степени окисления. В частности К 3 по реакции с атомарным водородом (цинк в солянокислой среде) удается восстановить до К 6 . Причем в составе нового комплекса атом хрома принимает три дополнительных электрона на свои орбитали и, приобретая нулевую степень окисления, должен был бы, тем самым, воспроизвести электронную конфигурацию нейтрального атома 3d 5 4s 1 4p 0 с шестью неспаренными электронами. Однако комплекс К 6 диамагнитен. Подобные факты дали основания предположить, что в комплексах с активными π –акцепторами меняется электронное строение комплексообразователя: на d -подуровне в первую очередь заселяются d ε –орбитали (поначалу в соответствие с правилом Хунда, а при конфигурациях d 4 , d 5 и d 6 – попарно). Это позволяет, во-первых, сохранять (n-1)d γ –орбитали вакантными и использовать их для внутриорбитальной гибридизации и σ –связывания, а во-вторых, попарно заполненные d ε –орбитали могут быть задействованы для дополнительного π d (M) → p (L) –взаимодействия, что приводит к увеличению кратности связи комплексообразователь лиганд . Принимая во внимание эти рассуждения, образование комплекса 6– с точки зрения МВС может быть схематично показано следующим образом:

Особенность цианид-ионов в качестве лигандов подтверждает и сравнение комплексов хрома (II): при одинаковом электронном строении центрального атома (d 4) магнитные моменты 4– , с одной стороны, и 2+ , 4– , 4– ,…, с другой, отличаются:

В то же время МВС оказывается бессилен перед объяснением различий в оптических свойствах (окрашенности) и деталей пространственного строения: в отличие от цианидного комплекса все прочие, несмотря на однородный лигандный состав и равноценность участвующих в σ –связывании гибридизованных орбиталей центрального атома, характеризуются слабым тетрагональным искажением октаэдрической координации (КЧ = 4+2).

При дальнейшем повышении заряда ядра и одновременном увеличении числа электронов на валентных орбиталях наблюдается:

ü растущая стабилизация низких степеней окисления d –элементов;

ü усиление π –донорных свойств атомов (ионов) d –металлов. Соответственно постепенно ослабевает взаимодействие с лигандами σ – и π –донорами, растет предпочтение к связыванию с лигандами π –акцепторами, как следствие – комплексы становятся более разнообразными;

ü постепенный переход к внешнеорбитальным комплексам.

Рассмотрим некоторые комплексы Ni (II), Cu (II) и Cu (I).

Комплексы Cu (II) весьма разнообразны по лигандному составу: перечень только монодентантных лигандов, при связывании с которыми могут быть получены островные комплексы, включает в себя Н 2 О, OH – , Г – , NH 3 , SCN – , S 2 O 3 2– , NO 2 – и т.д. Весьма разнообразна их окраска: голубые, желто-зеленые, сине-фиолетовые,… . В то же время магнитные свойства комплексов одинаковы, а их структуры сходны или родственны:

– при электронной конфигурации центрального атома d 9 во всех комплексах иона Cu 2+ обнаруживается один неспаренный электрон;

– в большинстве комплексов реализуется тетрагонально искаженная октаэдрическая координация (КЧ = 4+2); порой оба или один из слабо связанных лигандов полностью покидают координационную сферу (при этом получаются или квадратные – КЧ=4 (нет тетраэдров! ), или квадратно-пирамидальные комплексы – КЧ=4+1):

КЧ = 4+2 (вытянутый октаэдр) КЧ = 4+1 (квадратная пирамида) КЧ = 4 (квадрат)
2+ , 4– , 2+ , 2+ , 4– 3 – , 2+ 2– , 2+ , 2– , 2–

С точки зрения МВС все комплексы Cu (II) являются внешнеорбитальными:

Напомним, что для формирования электронных облаков, ориентированных к вершинам квадратной пирамиды, в гибридизацию должна вовлекаться орбиталь d x 2 - y 2 . Она же необходима для образования плоско-квадратных комплексов, в то время как р z –орбиталь из гибридизации извлекается. Кроме того, следует отметить, что, в соответствие с МВС, в хлоридном и гидроксокомплексе возможно слабое дополнительное π –связывание (ионы Cl – являются слабыми π –донорами и π –акцепторами; ионы ОН – обладают гораздо более выраженными π –донорными свойствами, но центральный атом π –акцепторные свойства может реализовать только за счет высоколежащих 4d –орбиталей). Несмотря на объяснения способов ковалентного взаимодействия центрального атома и лигандов, МВС, по-прежнему, бессилен предложить причины, как спектральной активности, так и структурных особенностей комплексов. Любопытно, что комплексы Cu (I) наоборот, в подавляющем большинстве бесцветны, но гораздо более разнообразны в структурном плане, несмотря на более низкие координационные числа (КЧ: 2, 3, 4; координационные формы: линия, треугольник, тетраэдр – нет квадратов !):

Что касается комплексов s – и р –элементов, то кратко отметим лишь некоторые важные закономерности:

· В качестве комплексообразователей выступают ионы элементов (см. табл.4.7) с промежуточным поляризующим действием (электро-отрицательностью), однако важно понимать, что у большинства рассматриваемых элементов эти характеристики заметно выше, чем у d –металлов;

· Практически все потенциальные комплексообразователи образуют только октаэдрические комплексы (у Ве 2+ , В 3+ известны только тетраэдры; Al 3+ и Ga 3+ наряду с октаэдрами тоже порой образуют тетраэдрические комплексы; Sn 2+ , Pb 2+ имеют только тетраэдрические и тригонально-пирамидальные комплексы), что требует вовлечение в гибридизацию и σ –взаимодействие nd γ -орбиталей (за счет s – и р –орбиталей может быть реализовано только КЧ=4). Это предполагает связывание с сильно электроотрицательными атомами, а также то, что за счет вакантных nd ε -орбиталей потенциальные комплексообразователи являются достаточно активными π –акцепторами.

· В качестве лигандов в подавляющем большинстве случаев выступают активные σ – и π –доноры: ОН 2 (только при связывании с ионами, не вызывающими сильный гидролиз, т.е. п/д , которых минимально в данном ряду элементов), ОН – (при связывании с ионами, характеризующимися промежуточным уровнем п/д в ряду данных элементов), одноатомные лиганды: О 2– , F – . Р –элементы VI–го, V–го и, в меньшей степени, IV–го периодов имеют заполненные (n-1)d 10 –подуровни и, поэтому могут участвовать в π d (M) → d (L) –взаимодействии. Соответственно, для таких элементов даже в водной среде могут оказаться вполне конкурентными, выгодными связи М–Cl и Cl – в качестве потенциального лиганда. В ряде случаев стабилизируются комплексы и с более крупными галогенами. Те же элементы, но гораздо реже могут образовать островные воднорастворимые комплексы с лигандами S 2– и SH – .

· Все комплексы р –элементов диамагнитны и в подавляющем большинстве своем – бесцветны. Чрезвычайно редкие исключения возможны в случае комплексов с лигандами π –акцепторами.

Таблица 4.12

Составы важнейших островных

воднорастворимых комплексов р –элементов

IIа IIIа IVа VIа
2+ 2– 2– – 2– – –– –– ––
2+ 3+ – – 3– 3– 2– 2– ––
То же, что у Al 3+ 2– 2– 2– – AsO 4 3– ; – – – ––
То же, что у Al 3+ , кроме гидроксокомплекса , дополнительно – 3– 2+ 2– 2– 2– ; 2+ – – – – – ; + – 3– – ; 2– 2–
3– ; 2– 2– 2– ; 2+ – – 3+ – 2+ [Ро(OH) 6 ] 2– [РоCl 6 ] 2– ; [Ро(OH 2) 6 ] 2+

В заключение кратко обсудим применение идей МВС для объяснения состава, структуры и некоторых свойств достаточно своеобразных соединений: карбонилов и карбонильных комплексов d –элементов (известны также и полилигандные карбонилы: карбонилнитрозилы (M(CO) x (NO) y), карбонилгалогениды (M(CO) x Г y), карбонилгидриды (M(CO) x H y), карбонил-металлоцены (M(CO) x (C 5 H 5) y) и т.п., в том числе, полиядерные, содержащие несколько атомов d –металла). Состав большинства из них подчиняется правилам, сформулированным в 20-е годы ХХв. на рубеже становления квантово-механической модели строения атома: первое и модифицированное правило Сиджвика (правило 18 электронов ): наиболее стабильными являются комплексы, в составе которых центральный атом имеет полностью завершенную (n-1)d 10 ns 2 np 6 -конфигурацию . В расчет принимаются валентные электроны d –элемента и электроны лигандов, задействованные в связях M–L . Правило основано на предположении попарного заселения валентных орбиталей электронами центрального атома и донорно-акцепторном взаимодействии комплексообразователь–лиганд (лиганды-радикалы, типа NO, рассматриваются как доноры трех электронов; лиганды с протяженными π –системами являются донорами всех своих π –электронов).

Таблица 4.13

Состав известных карбонилов 3d -элементов

Объем и тематика данного учебника не позволяют выполнить анализ возможных причин, ограничивающих круг элементов, склонных к образованию карбонилов (табл.4.14). Отметим только, что с учетом родственных соединений они получены для всех d -металлов за исключением

Таблица 4.14

Круг d -элементов, входящих в состав карбонилов

Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La Hf Ta W Re Os Ir Pt Au Hg

Nb, Ta, а также элементов подгрупп скандия и цинка. В то же время состав и структуры простейших карбонилов идеально согласуются с правилом Сиджвика и теорией Полинга. В частности, чередование мономерных (у Cr, Fe и Ni) и димерных молекул (у V, Mn и Со) есть результат того, что элементы нечетных групп имеют нечетное число валентных электронов, поэтому мономерные молекулы являются радикалами и способны объединяться за счет связи М–М (такие соединения принято называть кластерами ):

ü примеры боснование состава на основе модифицированного правила Сиджвика:

ü структуры на основе теории Полинга

КЧ Cr = 6 КЧ Fe = 5 КЧ Ni = 4

октаэдр тригональная тетраэдр

бипирамида

d 2 3 dsр 3 3

КЧ Mn = 6 КЧ Со = 4+1

октаэдр тригональная

бипирамида

d 2 3 dsр 3

У Fe, Co и некоторых тяжелых d –металлов известны "сложные карбонилы". Убедительных объяснений их состава и избирательного существования, пока не выработано. В то же время особенности их структуры (наличие связей М–М , число мостиковых или концевых молекул СО, пространственное окружение) можно предвидеть, применяя теорию Сиджвика/Полинга (см., например, учебник Дж.Хьюи "Неорганическая химия. Строение вещества и реакционная способность").

2. В результате перекрывания АО появляется общая для двух атомов электронная пара с антипараллельными (т.е. противоположными по знаку) спинами, которая обеспечивает одну химическую связь.

3. В ходе взаимодействия АО могут подвергаться гибридизации (при этом получаются ГАО - гибридные атомные орбитали).

По сути дела, МВС является более совершенным вариантом теории ковалентной связи. В МВС химическая связь так же может быть образована двумя способами:

1. Обменный механизм

2. Донорно-акцепторный механизм

Связи, образованные одними и теми же атомами различными способами абсолютно неотличимы друг от друга. Так, молекула водорода может быть получена как по обменному, так и по донорно-акцепторному механизмам:

МВС дает ясную и точную трактовку понятия валентности. Валентность - это число АО данного атома, принявших участие в перекрывании с АО других атомов по обменному или донорно-акцепторному механизмам.

Атомы могут образовывать связи как в нормальном (невозбужденном), так и в возбужденном состоянии. Переход атома в возбужденное состояние связан с перескоком валентных электронов с одного валентного подуровня на другой. При этом появляется дополнительное количество неспаренных электронов и увеличиваются валентные возможности атома по обменному механизму.

Пример: атом фосфора в нормальном состоянии имеет электронное строение 1s 2 2s 2 2p 6 3s 2 3p 3 или [Ne ] 3s 2 3p 3 . Валентные электроны фосфора (3s 2 3p 3 ) распределены по валентным орбиталям следующим образом:

Невозбужденный атом фосфора может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному (за счет пары электронов 3s 2 ). Поэтому такой атом фосфора может иметь валентность или III или IV.

Возбужденный атом фосфора (Р * ) может образовать 5 связей по обменному механизму, то есть его валентность равна V. И, действительно, фосфор в своих соединениях проявляет валентность III (PH 3 - фосфин), IV (P - ион фосфоний), V (H 3 PO 4 - фосфорная кислота). Другие валентности для фосфора нехарактерны.

Если атомы в ходе химического взаимодействия не подвергаются гибридизации, то описание образования связей с позиций МВС осуществляется следующим образом:

а) составляется орбитальная диаграмма образования связей;

б) схематически изображается перекрывание орбиталей в пространстве.

Пример : молекула Cl 2 .

Данная диаграмма показывает, что в молекуле Cl 2 существует одна ковалентная связь, образованная по обменному механизму. Графическая формула этой молекулы: Cl - Cl .


Пространственное строение молекулы Cl 2 (изображены только 3p - орбитали):

По типу перекрывания орбиталей различаются s - связи, p - связи и d - связи.

s - cвязь образуется при “лобовом” перекрывании орбиталей, т.е. максимум перекрывания АО находится на прямой линии, соединяющей ядра атомов. s - связь самая прочная. Она может образовываться при перекрывании орбиталей любого вида:

В случае p - связи максимумы перекрывания АО находятся в 2-х областях, лежащих на плоскости, проходящей через ядра атомов:

В случае d - связи максимумы перекрывания АО находятся в 4-х областях, лежащих на 2-х взаимно перпендикулярных плоскостях, проходящих через ядра атомов. Связи такого типа могут возникать только при перекрывании d - и f - орбиталей и изучены очень мало.

Попытки применения МВС в простейшем варианте, изложенном выше для описания химического строения большинства молекул состоящих из 3 и более атомов оказались неудачными. Во многих случаях теория абсолютно не соответствовала экспериментальным данным. Для устранения этого противоречия была разработана теория гибридизации.

Гибридизация - это глубокая перестройка АО, возникающая при переходе атома из нормального в возбужденное состояние. При этом АО превращаются в ГАО (гибридные атомные орбитали). ГАО резко отличаются от исходных АО по энергии, форме и ориентации в пространстве. В то же время ГАО одного атома абсолютно одинаковы по энергии и форме между собой.

Пример : sp 3 - гибридизация атома углерода :

Все ГАО имеют форму ассиметричной гантели (т.е. вытянуты в одном направлении). Гибридизации могут подвергаться только орбитали валентных подуровней. В ходе гибридизации из n АО получаются n ГАО. ГАО участвуют в образовании только s - связей, причем эти связи более прочные, чем аналогичные s - связи с участием негибридных АО.

В настоящее время в различных веществах обнаружено около 20 различных типов гибридизации. Но чаще всего встречаются 6 типов гибридизации:

Тип гибридизации Взаимное расположение ГАО в пространстве Структурные формы
sp
sp 2
sp 3
sp 3 d 1
sp 3 d 2
spd 2

Наличие гибридизации и ее тип у того или иного атома в молекуле в общем случае предсказать нельзя.

Для однозначного решения этой задачи в большинстве случаев нужно знать:

1. Сколько связей между каждой парой атомов (первая связь - всегда s - связь, вторая и третья - p - связи).

2. Чему равны валентные углы (углы между связями) или, по крайней мере, чему равен дипольный момент молекулы (сумма дипольных моментов связей).

Пример 1 . Известно, что молекула CСl 4 неполярна (½m½ = 0). Углы между связями С - Сl одинаковы и равны 109°28¢. Все связи C - Cl одинаковы по длине и энергии. Все эти данные свидетельствуют в пользу того факта, что углерод в этой молекуле находится в состоянии sp 3 - гибридизации.

Поэтому орбитальная диаграмма выглядит следующим образом:

Пространственноестроение CCl 4 - атомы Cl образуют правильную фигуру (тетраэдр). Относительно возможной гибридизации атомов хлора ничего сказать нельзя, т.к. исходных данных недостаточно для этого.

Пример 2 . Молекула Н 2 О полярна (çm ç ¹ 0), угол между связями Н-О равен 105°30¢. Водород не может подвергаться гибридизации, так как у него всего одна валентная орбиталь. Кислород может быть негибридизированным (тогда угол между связями должен быть 90°) или иметь один из 3 типов гибридизации (другие невозможны из-за отсутствия валентных d и f - орбиталей): sp - гибридизация (валентный угол 180°), sp 2 - гибридизация (120°), sp 3 - гибридизация (109°28¢).

Так как валентный угол в молекуле воды наиболее близок к таковому для случая sp 3 - гибридизации, орбитальная диаграмма этой молекулы следующая:

Валентный угол в такой молекуле отличается от стандартного тетраэдрического (109°28¢) за счет того, что ГАО кислорода неравноценны: две из них связывающие (принимают участие в образовании связей О - Н ), а две - несвязывающие:

Несвязывающие атомные орбитали кислорода сильно отталкиваются друг от друга и это приводит к тому, что валентный угол в молекуле воды меньше на 5° относительно стандартного для sp 3 -гибридизации.

Пример 3 : Молекула СО 2 неполярна (çm ç = 0). Этого вполне достаточно, чтобы описать строение этой молекулы. Каждая связь С - О является полярной, так как атомы углерода и кислорода сильно отличаются по электроотрицательности. Чтобы молекула в целом была неполярной, необходимо чтобы связи С - О имели валентный угол равный 180°:

При сложении 2 векторов одинаковых по длине и противополжных по направлению получается ноль. Угол 180° соответствует sp -гибридизации атома углерода. Отсюда следует орбитальная диаграмма.

Основные положения МВС:

1. Связь образуется неспаренными электронами двух атомов с антипараллельными спинами.

2. При образовании химической связи атомные орбитали (АО) перекрываются и связь тем прочнее, чем в большей степени перекрываются АО.

Ковалентная связь - связь, образуемая неспаренными электронами атомов с образованием общей электронной пары. Характеризуется насыщаемостью, направленностью и поляризуемостью.

Связь может образоваться как за счет неспаренных электронов двух атомов (обменный механизм) , так и за счет электронной пары одного атома (донор) и пустой (вакантной) АО другого (акцептор). В последнем случае говорят о донорно-акцепторном или дативном взаимодействии.

Валентность (электронная, связевая) атома определяется числом неспаренных электронов, электронных пар и вакантных АО, которые участвуют в образовании химических связей, а валентность атома в молекуле - числом общих с соседними атомами электронных пар.

Валентные возможности атомов. В ряде случаев число неспаренных электронов может увеличиться в результате возбуждения атома, вызывающе го распад двухэлектронных облаков на одноэлектронные. Например, атом бериллия в основном состоянии не имеет неспаренных электронов. Все электроны спарены, валентность равна 0. Однако общеизвестна валентность бериллия, равная двум.

Для объяснения этого в методе ВС вводят представление опромотировании (возбуждении) электронов валентной оболочки: электрон с 2s- АО пе-

реходит на пустую 2р- АО. Таким образом, вступая в химическое соединение, атом бериллия переходит в возбужденное состояние (Ве*):

Энергия возбуждения атома Ве из состояния 2s 2 в состояние 2s 1 2p 1 составляет 259 кДж/моль,а при образовании одной химической связи происходит выделение энергии от 160 до 400 кДж. Таким образом, хотя на возбуждение атома бериллия затрачивается энергия, при образовании двух химических связей энергии может выделиться гораздо больше, чем затрачивается. В результате система понижает свою энергию, то есть она становится устойчивее.

Пример 1. Определите валентные возможности атомов бора и углерода.

Решение. В основном состоянии у атома бора имеется один неспаренный электрон и неподеленная пара электронов, а также АО. Поэтому за счет перехода атома в возбужденное состояние число неспаренных электронов увеличивается до трех, что определяет валентность В, равную трем (№ группы). Из схемы видно, что валентность углерода равна 2 в основном состоянии и 4 в возбужденном.

В (1s 2 2s 2 2p 1) ® B*

C (1s 2 2s 2 2p 2) ® С*



Возбуждение атомов азота, кислорода и фтора в пределах второго квантового уровня не может привести к увеличению числа неспаренных электронов (N - 2s 2 2p 3 ; O - 2s 2 2p 4 ; F - 2s 2 2p 5 - все орбитали заняты). Возбуждение электронов в этих атомах, связанное с их перемещением на следующий, третий, квантовый уровень, требует значительно большей энергии, чем та, которая выделяется при образовании дополнительных связей. Поэтому, например, соединения четырехвалентного кислорода должны быть крайне неустойчивы.

Образование химических связей в методе ВС изображают с помощью схем ВС. Например, для молекулы СН 4 и СО такие схемы изображены на рисунках 3.1 и 3.2.

Приведённым схемам ВС соответствуют структурные формулы (СФ) (рис. 3.3), на которых связывающие электронные пары изображают чёрточками (валентная черта), а несвязывающие электроны – точками.

С* C Акцептор

4H O Донор

1s 1s 1s 1s 2s 2p

Рис. 3.1.Схема ВС для Рис.3.2.Схема ВС

молекулы СН 4 для молекулы СО

Н:С ≡ О:

Рис. 3.3. Структурные формулы для молекул СН 4 и СО

Рассмотренный в случае молекулы СН 4 механизм образования ковалентной связи (рис. 3.1) называют обменным.

Пример 2. Рассмотреть образование связей в молекуле СО. Чему равна кратность связи в этой молекуле?

Решение. Рассмотрим схему ВС молекулы СО (рис. 3.2). За счет неспаренных электронов атомов образуется две связи (С=О), но в атоме кислорода имеется неподеленная электронная пара, а у тома углерода - вакантная АО. Атом кислорода при этом называютдонором , а углерода - акцептором электронной пары. Связь, образованная по такому механизму называется донорно-акцепторной. Таким образом, в молекуле СО между атомами образуется тройная связь, кратность связи равна трем .



Кратность связи – число связей между атомами двух элементов. Чем больше кратность связи, тем больше энергия связи и тем меньше длина связи.

Насыщаемость и максимальная ковалентность. Из рассмотренных выше механизмов образования связи следует, что с точки зрения метода ВС максимально возможное число ковалентных связей (максимальная ковалентность) определяется не только числом валентных (неспаренных) электронов, но и общим числом валентных АО. Так, для элементов первого периода максимальная ковалентность равна 1, для второго периода – четырем, так как валентными являются 4 АО – одна 2s- и три 2р. Элементы третьего периода имеют 9 валентных АО – одну 3s, три 3р и пять 3d, и эта максимальная ковалентность практически не реализуется уже по другим причинам (слишком высока энергия возбуждения нескольких электронов на 3d- орбитали; стереохимические, то есть связанные с геометрией молекул, затруднения).

Ограничение числа химических связей атома, вызванное ограниченным числом валентных электронов и АО, называют насыщаемостью ковалентной химической связи.

Направленность химической связи и углы между связями, гибридизация .

Направленность – свойство, зависящее от направления перекрывания атомных орбиталей (АО). В зависимости от этого различают сигма (s) ипи(p) связи. s- связи возникают при перекрывании АО вдоль линии связи, соединяющей ядра атомов; p- связи образуются при перекрывании АО вне линии, соединяющих ядра атомов.

Между двумя атомами , в соответствие с рассматриваемым методом ВС, может быть только одна связь s типа.

Пример 3. Для молекулы азота укажите число π-связей. Чему равна кратность связи между атомами?

Решение. Электронная формула атома азота: 1s 2 2s 2 2p 3 .

Из графической формулы атома азота видно, что имеется три

неспаренных электрона, которые с тремя неспаренными электронами второго атома азота могут образовать три связи по обменному механизму. Поскольку во втором квантовом уровне вакантных орбиталей нет, увеличения неспаренных электронов за счет промотирования произойти не может, а, следовательно, кратность связи в молекуле N 2 равна трем.

Из этих трех связей одна - s -связь и две - p .

Для объяснения углов между связями введено представление о гибридизации АО , то есть о перемешивании орбиталей с различными орбитальными квантовыми числами с получением гибридных (смешанных) АО. Гибридизация АОпроисходит всегда, когда в образовании связей участвуют электроны, принадлежащие к различным типам АО. Тип гибридизации определяет пространственную структуру молекулы и валентные углы (табл. 3.1).

Таблица 3.1

Связь пространственной конфигурации молекул и ионов

с типом гибридизации АО

Рассмотрим, например, молекулу BeCl 2 методом ВС (рис. 3.5).

Атом бериллия в возбужденном состоянии имеет два валентных электрона – на 2s- и на 2р -АО. При этом форма молекулы неопределенна, так как одна из связей (2s - 3р) ненаправленная (s -АО шарообразна, имеет одинаковую электронную плотность по всем направлениям).

Однако экспериментально доказано, что дипольный момент молекулы равен нулю; так как дипольные моменты каждой из связей больше нуля,

то это говорит о том, что молекула линейна, связи Ве-Cl расположены под углом 180 0 . Согласно табл. 3.1, это соответствует sp- гибридизации атома бериллия.

Следует отметить, что в гибридизации участвуют не только АО, имеющие неспаренные электроны и образующие s- связи, но и АО с несвязывающими электронными парами (p- связи в гибридизации не участвуют). Молекулой с несвязывающими электронными парами, участвующих в гибридизации, является, например, молекула Н 2 О. Схема ВС и структурная формула показаны на рисунке 3.6.

В соответствии с диаграммой ВС у атома кислорода имеет место гибридизация sр 3 -типа. Углы между электронными облаками должны быть
109 O 28 / . Однако на самом деле углы искажаются вследствие неравноценности облаков (см. далее - метод ОЭПВО ), и угол НОН составляет 104,5 O (структура молекулы - угловая).

Рис. 3.6.Схема ВС и структурная формула молекулы Н 2 О

Метод отталкивания электронных пар валентной оболочки атома(ОЭПВО). Метод ВС лежит в основе определения углов между связями и их искажений под влиянием несвязывающих электронных пар. При этом исходят из того, что имеет место отталкивание электронных пар валентной оболочки (ОЭПВО).

Главное положение метода ОЭПВО состоит в том, что электронные пары валентной оболочки атома (в молекуле) взаимно отталкиваются и располагаются вокруг атома таким образом (под такими углами), чтобы это отталкивание было минимальным.

Метод ОЭПВО определяет изменения форм молекул и искажения углов между связями по сравнению с идеальными за счет неподеленных электронных пар и кратных связей, а также взаимное расположение неравноценных атомов и электронных пар. Для того чтобы воспользоваться этим методом, нужно, прежде всего, определить:

1) общее число электронных пар атома А;

2) по этому числу - форму правильной фигуры, образуемой электронными облаками;

4) После этого можно определить геометрию молекулы.

Перечислим основные положенияметода ОЭПВО.

1. Несвязывающие электронные пары отталкивают сильнее, чем связывающие, поэтому они искажают форму молекулы.

2. Так как несвязывающие электронные пары отталкиваются сильнее, то при наличии нескольких несвязывающих электронных пар они располагаются на максимальном удалении друг от друга.

3. Чем больше электроотрицательность концевых атомов, тем сильнее они отталкиваются несвязывающей электронной парой, то есть углы ВАВ меньше. Например, молекулы с электронными парами типа АХ 3 Е (NH 3 и NF 3) имеют углы: Ð HNH = 107° и Ð FNF = 102°, что соответствует ЭО
(Н) = 2,1 и ЭО (F) = 4 (Е - несвязывающая электронная пара).

4. Кратные связи отталкивают сильнее, чем ординарные.

5. Искажение углов между связями под действием неподеленной электронной пары тем больше, чем больше число свободных АО на валентной оболочке атома и больше ее размеры. Например, у однотипных молекул NH 3 , PH 3 , AsH 3 угол в этом ряду уменьшается с увеличением числа валентных АО (табл. 3.2). То же самое можно сказать о молекулах H 2 O, H 2 S, H 2 Se.

Рассмотрим более подробно примеры определения геометрии молекул методом ОЭПВО.

Пример 4. Определить тип гибридизации, валентный угол и пространственную структуру в молекулярном ионе BF 4 - .

Структура и свойства молекул с ковалентной связью могут быть объяснены с позиций метода валентных связей (ВС)

Основные положения метода ВС:

    По методу ВС химическая связь между двумя атомами возникает в результате перекрывания атомных орбиталей (АО) с образованием электронных пар;

    образованная электронная пара локализована между двумя атомами. Такая связь является двухцентровой и двухэлектронной;

    химическая связь образуется только при взаимодействии электронов с антипараллельными спинами;

    характеристики химической связи (энергия, длина, полярность, валентные углы) определяется типом перекрывания АО;

    ковалентная связь направлена в сторону максимального перекрывания АО реагирующих атомов.

На рисунке 7 приведена схема образования связи в молекуле фтора F 2 по методу ВС

Рисунок 7 – схема образования связи в

Рисунок 6 – схема образования связи в молекуле фтора

3.1.6 Межмолекулярные связи

К основным видам межмолекулярного взаимодействия относят вандерваальсовы силы, водородные связи и донорно-акцепторные взаимодействия.

Вандерваальсовы силы обуславливают притяжение межу молекулами и включают в себя три составлющие: диполь- дипольное взаимодействия, индукционное и дисперсионное взаимодействия.

Диполь - дипольное взаимодействие происходит за счет ориентации диполей:

Индукционное взаимодействие . При воздействии диполей на неполярные молекулы возникают наведенные диполи:

Дисперсионное притяжение возникает за счет возникновения мгновенных диполей и их суммирования:

3.1.7 Водородная связь

Водородная связь – это химическая связь, образованная положительно поляризованным водородом, химически связанным в одной молекуле, и отрицательно поляризованным атомом фтора, кислорода и азота (реже хлора, серы и др.), принадлежащих другой молекуле. Водородная связь может быть внутримолекулярной, если она образуется между двумя группами одной и той же молекулы, и межмолекулярной, если она образуется между разными молекулами (А-Н + В-К = А-Н...В-К).

Энергия и длина водородной связи. Энергия возрастает с увеличением электроотрицательности (ЭО) и уменьшением размеров атомов. Водородная связь более прочная, чем вандерваальсово взаимодействие, но менее прочная, чем ковалентная связь. Аналогичную зависимость имеет и длина связи.

В ряду H 2 O – Н 2 S - Н 2 Se – H 2 Te свойства воды резко отличаются от свойств других веществ. Если бы вода не обладала водородными связями, она имела бы температуру плавления не 0°С, а (-100°С), и температуру кипения не 100°С, а -80°С. Водородная связь влияет и на химические свойства веществ. Так, HF - слабая кислота, тогда как НС1 - сильная. Причина в том, что HF образует с помощью водородной связи дифторид-ионы и другие более сложные ассоциаты.

4 Комплексные соединения

4.1 Состав комплексных соединений.

Комплексными называются соединения , образованные сочетаниями

отдельных компонентов – электронейтральных молекул простых и сложных

Теория, объясняющая строение таких соединений, была предложена А. Вернером. Она получила название координационной теории . Её основные положения сводятся к следующему:

    Один из основных компонентов комплексного соединения – центральный атом или центральный ион , иначе – комплексообразователь.

Чаще всего комплексообразователем является ион d- элемента, но известны комплексы с ионами s- или р-элементов в роли центральных ионов.

Комплексообразователем может быть и нейтральный атом, например Fe .

    Комплексообразователь координирует (удерживает вокруг себя) неко-

торое число одинаковых или разных лигандов.

В качестве лигандов могут выступать как анионы, так и нейтральные

молекулы, атомы в которых имеют неподеленные электронные пары, или молеулы, атомы в которых связаны π-связями, например: F - , Cl - , Br - , I - , OH - , CN- , SCN - , NO 2 - , SO 4 2- , S 2 O 3 2-, H 2 O, NH 3 .

Общее число лигандов при данном центральном ионе – координацион-

ное число – зависит от его природы, заряда и от природы лигандов.

    Комплексообразователь с координированными лигандами образует

внутреннюю координационную сферу . При записи химической формулы

внутренняя координационная сфера заключается в квадратные скобки. В зави-

симости от зарядов комплексообразователя и лигандов комплекс представляет

собой анион, катион или нейтральную молекулу . Например:

2+ , - , 0 .

Заряд комплекса подсчитывают как алгебраическую сумму зарядов всех

составляющих его частиц (считая все заряды целочисленными). Незаряженным

центральным атомам и лигандам – нейтральным молекулам приписывается ну-

левой заряд.

    Заряд комплексного иона уравновешивается зарядами соответст-

вующих противоионов, образующих внешнюю координационную сфе-

ру (записываются за квадратными скобками), например: (OH) 2 , Cl

На рисунке 7представлена структура комплексного соединения.

Рисунок 7 – структура комплексного соединения

Чаще всего роль комплексообразователей выполняют катионы переходных металлов (d-элементы, f-элементы, реже s и p). Число лигандов, располагающихся вокруг комплексообразователя, называется координационным числом. Чаще встречаются координационные числа 2, 4 и 6, что соответствует наиболее симметричной геометрической конфигурации комплекса – линейной (2), тетраэдрической (4), октаэдрической (6).

Способность к комплексообразованию уменьшается в следующем порядке: f > d >p >>s.

Заряд комплексного иона численно равен суммарному заряду внешней сферы, но противоположен ему по знаку, и определяется как алгебраическая сумма зарядов комплексообразователя и лигандов.

В методе предполагается, что химическая связь образуется двумя неспаренными электронами с антипараллельными спинами. При этом происходит обобществление электронов т. е. образуется электронная пара, принадлежащая двум атомам.

В 1927 г. немецкие ученые У. Гейтлер и Ф. Лондон провели квантово-механический расчет взаимодействия атомов водорода при образовании молекулы . В результате приближенного решения уравнения Шредингера они вывели зависимость потенциальной энергии системы от расстояния между ядрами атомов водорода (рис. II. 3). При сближении двух атомов электроны с антипараллельными спинами притягиваются одновременно двумя протонами, поэтому потенциальная энергия системы уменьшается (кривая При сближении двух атомов действуют не только силы притяжения, но и силы отталкивания. Два электрона отталкиваются друг от друга, то же наблюдается и для двух протонов. Силы отталкивания начинают преобладать при очень малых расстояниях между атомами. При некотором расстоянии между ядрами энергия системы минимальна. Система становится наиболее устойчивой, возникает химическая связь и образуется молекула водорода. Например, в молекуле водорода нм. При сближении атомов, у электронов которых спины параллельны, наблюдается только их отталкивание, и энергия системы возрастает (кривая 2). Квантово-механические расчеты показывают, что электронная плотность в системе при взаимодействии двух атомов водорода, имеющих антипараллельные спины электронов, максимальна в области, лежащей между ядрами.

В то же время электронная плотность в области между ядрами двух атомов с параллельными спинами электронов минимальна.

Механизм образования химической связи, разработанный для молекулы водорода, позднее был распространен и на другие молекулы. Рассмотрим образование химической связи в двухатомных молекулах элементов первого и второго периодов периодической системы элементов Менделеева, пользуясь методом Электронные конфигурации элементов первого и второго периодов приведены в табл. II.2. Напомним, что существует только одна -орбиталь, в то время как -орбиталей имеется три. Каждая орбиталь может содержать два электрона

Рис. II.3. Зависимость потенциальной энергии системы из двух атомов водорода от расстояния между ядрами: 1 - антипараллельные спины электронов; 2 - параллельные спины электронов

Та6лица II.2. Электронные конфигурации элементов первого и второго периодов и строение двухатомных молекул согласно методу ВС (см. скан)

с антипараллельными спинами. Значит, наибольшее число неспаренных электронов в -подуровне равно трем, как, например, у атома азота, электронная конфигурация которого

Поэтому при образовании молекулы азота обобществляются три пары электронов (тройная связь Атом кислорода, электронная конфигурация которого должен иметь два спаренных электрона на одной из трех -орбиталей. Таким образом, он обладает лишь двумя неспаренными электронами, которые участвуют в образовании химической связи. Вследствие этого в молекуле кислорода общими являются две пары электронов (двойная связь ).

Валентность.

В учении о химической связи широко используют очень важное понятие о валентности элементов. Способность атома к образованию химических связей называют в а-лентностью элемента. Количественной мерой валентности принято считать число разных атомов в молекуле, с которыми данный атом образует связи. Согласно обменному механизму метода валентность элементов определяется числом содержащихся в атоме неспаренных электронов. Для s- и -электронов - это электроны внешнего уровня, для d-элементов - внешнего и предвнешнего уровней.

Спаренные (расположенные по два на атомных орбиталях) электроны при возбуждении могут разъединяться при наличии свободных ячеек того же уровня (разъединение электронов в какой-либо иной уровень невозможно). Например, валентность (В) элементов главной подгруппы I группы равна единице, так как на внешнем уровне атомы этих элементов имеют один электрон:

Валентность элементов главной подгруппы II группы в основном (невозбужденном) состоянии равна нулю, так как на внешнем уровне нет неспаренных электронов:

При возбуждении этих атомов спаренные -электроны разъединяются в свободные ячейки -подуровня этого же уровня и валентность становится равной двум (возбужденный атом отмечен звездочкой):

Кислород и фтор во всех соединениях проявляют постоянную валентность, равную двум для кислорода и единице для фтора. Валентные электроны этих элементов находятся на втором энергетическом уровне, где нет более свободных ячеек:

В то же время сера - аналог кислорода - проявляет переменную валентность 2, 4, 6; хлор - аналог фтора - проявляет валентность 1, 3, 5, 7. Это объясняется наличием свободных d-ячеек на третьем энергетическом уровне:

При возбуждении

Для большинства d-элементов валентность в невозбужденном состоянии равна нулю, так как на внешнем уровне нет неспаренных электронов. Например, для железа

При возбуждении атома железа -электроны разъединяются и переходят на свободный -подуровень четвертого уровня, валентность становится равной двум:

Кроме электронов внешнего уровня валентными могут быть неспаренные d-электроны предвнешнего уровня, и валентность атома железа с учетом d-электронов может быть равна 3, 4, 5 и максимально 6.

Осмий - аналог железа - может проявлять максимальную валентность, равную восьми:

При возбуждении атома осмия -электроны разъединяются и переходят на свободный -подуровень шестого уровня, валентность становится равной двум. Неспаренные d-электроны увеличивают ее до шести. Кроме того, спаренные d-электроны имеют возможность разъединяться и переходить на свободный -подуровень пятого уровня, тогда максимальная валентность атома осмия становится равной восьми:

Донорно-акцепторный механизм образования ковалентной связи.

Рассмотренный механизм возникновения ковалентных связей путем обобществления неспаренных электронов двух атомов получил название обменного механизма. Образование ковалентной связи может происходить также при взаимодействии одного атома или иона с заполненной атомной орбиталью с другим атомом или ионом, имеющим вакантную (свободную) атомную орбиталь. Такой механизм образования

ковалентной связи называется донорно-акцепторным. Атом или ион, поставляющий пару электронов, называют донором, а атом или ион, к которому эта пара электронов перемещается, - акцептором. Согласно методу ковалентная связь по донорно-акцепторному механизму возникает при перекрывании вакантной орбитали акцептора с заполненными орбиталями донора или донорной группы. Поэтому донорная группа должна содержать по меньшей мере одну неподеленную пару электронов.

Рассмотрим образование химической связи по донорно-акцепторному механизму при взаимодействии молекулы аммиака с ионом водорода. Атом азота имеет на внешнем энергетическом уровне два спаренных b три неспаренных электрона.

Загрузка...